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Anthony J. Calise 
Georgia lnstitude of Technology 
School of Aerospace Engineering 

Atlanta, GA 30332 

SUMMARY 

This report presents a summary of the main results obtained during 
the course of this research effort. The term "output feedback" is used to 
denote a controller design approach which does not rely on an observer to 
estimate the states of the system. Thus the order of the controller is 
fixed, and can even be zero order, which amounts to constant gain output 
feedback. 

The emphasis of this research has been on pDt ima output feedback. 
That is, a fixed order controller is designed based on minimizing a 
suitably chosen quadratic performance index. A number of problem areas 
that arise in this context have been addressed. These include developing 
suitable methods for selecting an index of performance, both time 
domain and frequency domain methods for achieving robustness of the 
closed loop system, developing canonical forms to achieve a minimal 
parameterization for the controller, two time scale design formulations 
for ill-conditioned systems, and the development of convergent 
numerical algorithms for solving the output feedback problem. 

Portions of this research were accomplished while the auther was 
with Drexel University in the Department of Mechancal Engineering and 
Mechanics. 
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SECTION 1 
INTRODUCTION 

e 

I, 

e 

e 

a 

Constrained optimal output feedback, introduced in the early ~ O ' S ,  has 
received limited attention, despite its intuitive appeal. On the positive 
side, the designer can specify the complexity of the feedback structure by 
specifying the order of the compensator. Also, because actuator states are 
not estimated and fed back, the actuator dynamics are not sped up, which is a 
common problem in Linear Quadratic Gaussian (LQG) methods. This issue is of 
special concern in active control systems for vibration suppression. On the 
negative side is: (1) lack of robustness characterization in  the design 
process, (2) over-parameterization in the compensator representation, and (3) 
uncertainty in how to penalize the compensator states. The second problem is 
a direct consequence of the fact that the compensator definition lacks a 
predefined structure, which invariably results in difficulties with conver- 
gence to an optimal solution. 

Unlike the algebraic Riccati equation that arises in LQG design, the 
necessary conditions that result from the optimal output feedback problem are 
not conducive to analysis in the frequency domain. They also require itera- 
tive methods of solution. Thus the development of numerically convergent 
algorithms is of paramount importance. Moreover, since the solution process 
is more difficult, it is also more vulnerable to numerical ill-conditioning 
t h a t  may be present  due t o  widely separated modes i n  t h e  dynamics. Thus we 

have extended the results for two-time scale design of feedback control 
systems to the case of output feedback, both for constant gain design and for 
fixed-order dynamic compensation. 

Section 2 o f  this report presents the formulation and summarizes the 
results on two-time scale design for constant gain output feedback. In 
addition, two convergent algorithms are presented for computing the optimal 
feedback gains subject to a set of constraints on the feedback gain matrix. 
Section 3 takes up the subject of fixed-order dynamic compensation. Section 
4 addresses the issue of robustness, including both time domain and frequency 
domain results based on loop transfer recovery. The conclusions of this 
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research e f f o r t  a r e  presented i n  Section 5 .  Throughout t h i s  r e p o r t  we have 

i n t e n t i o n a l l y  neglected t o  reference other  r e l a t e d  research, s ince adequate 

re ferenc ing  i s  provided by the  papers l i s t e d  i n  t h e  re ference  sect ion .  
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CONSTANT 

In this section, the optima 
class of problems which includes 

SECTION 2 

G A I N  OUTPUT FEEDBACK 

ated for a 
related to 

two-time scale design are presented and convergent sequential algorithms for 
solving the necessary conditions are described. 

output feedback problem is formu 
the standard LQ case. The issues 

2.1 Problem Formulation and Necessary Conditions 

We consider systems of the form 

. 
x = Ax + Bu x(0) = xo 

where xsRn and usRm, with output 

y = cx 

a 
where ycRP. The control has the form 

u = -Gy 

e 
The gain, G, i s  to be chosen to minimize 

0 

J = [ xTQx + u T Ru dt + y(G) 

(2.3) 

T where Q = r r ,  such that the pair (r,A) is detectable, and R > 0. Addition- 
ally, in order to avoid singularity in the necessary conditions for the 
optimization problem, we must have 

P(C) = P 

In (2 .4) ,  y(G) is any scalar function having a continuous gradient in G, and 
for which J is bounded below, for all G which render the closed-loop dynamics 
(2.1-2.3) asymptotically stable. 

e - 3 -  



It is well-known that the integral portion of J satisfies the relation 

0 

a 

[ xTQx + u T Ru dt = tr{Kxoxo T } 

where K > 0 is the unique solution of 

T T T  S(G,K) = AcK + KAc + Q + C G RGC = 0 

A, = A - BGC 

(2.7) 

and Ac is asymptotically stable. It is customary to relieve (2.6) of its 
dependence on xo by assuming that it is a random variable, and modifying the 
problem statement to that of minimizing Exo{J}. This amounts to replacing 

in (2.6) by Xo, where Xo = E{xoxo T } 
xoxo 

From (2.6-2.8) we have an equivalent static optimization problem, in 
which the Lagrangian 

is minimized with respect to G, K, and L, where L is a matrix of Lagrange 
multipliers. 
the first order necessary conditions for optimality are: 

If the system (2.1-2.3) can be stabilized by output feedback, 

a,l/aG = o a,l/aK = o a,l/aL = o 

Defining the gradient o f  y(G) 

the expansion of (2.10) is 

R G C L C ~  - B T T 1  KLC + -z y G ( ~ )  = o 

I )  
T AcL + LAc + Xo = 0 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

e - 4 -  



S(G,K) = 0 

From (2.12), t h e  opt imal  va lue o f  G w i l l  s a t i s f y  

G* = R -1 [B T KLCT - yG(G)] (CLC T ) -1 

(2 .14)  

(2 .15)  

where (CLCT)-' e x i s t s  because o f  (2.5) and t h e  f a c t  t h a t  L > 0 i n  (2.13), f o r  

a s u i t a b l y  chosen X o .  

0 2.2 Two-Time Scale Design 

Consider t h e  system 

0 (2.16) i1 = A x + A12x2 + B1u, xl(0) = xl0, x l & R 1  n 11 1 

~i~ = A 21 x 1 + A 22 x 2 + B2u, ~ ~ ( 0 )  = x2 E Rn2 

e where 0 < E << 1, w i t h  ou tpu t  

y = CIXl + c2x2 y&RP 

8 The feedback law i s  

(2.17) 

(2.18) 

u = -Gy U E R ~  (2.19) 

I f  A22 i s  i n v e r t i b l e ,  a reduced order  approximat ion o f  (2.16-2.18) can be 

obta ined by s e t t i n g  E = 0 i n  (2.17): 

i = A. + Bou E E R ~ I  (2.20) 

y = COS + Dou 
- 

(2.21) 

where ., 
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- 
A. = - A 1 2 A 3 2 1  Bo - 

Co = C1 - C2A;:Az1 
- 

Do - 
( 2 . 2 2 )  

Substituting ( 2 . 1 9 )  in (2 .16 ,2 .17 )  and setting E = 0, the reduced feedback 
control is expressed as 

- 
u = -Gocot 

GO = ( I  + G D ~ ) - ~ G  

which necessitates the assumption 

p ( 1  + GDo) = m 

The inverse of ( 2 . 2 4 )  is 

0 -1 G = G o ( I  - DOG ) 

( 2 . 2 3 )  

( 2 . 2 4 )  

(2.25) 

( 2 . 2 6 )  

References [l-51 contain the main results and applications for the above 
formulation. In particular, it is shown that the output feedback problem 
does not naturally decompose into separate slow and fast designs. Instead, 
Go and G must stabilize the separate systems {Ao-BoGoCo} and {A22-B2GC2} 
while satisfying the hard constraint in ( 2 . 2 4 ) .  Design methods based on 
"gain spillover suppression" are described in [ l - 3 1 ,  where [3] represents the 
most complete set of results. In these papers, separate performance indices 
are set up for the slow and fast problems. An alternative design approach 
based on minimizing a single index of performance, which is more in the 
spirit of singular perturbation design o f  optimal linear regulators, is given 
in [4 ] .  Here we show that the optimal state and control time histories can 
be approximated to O(E) uniformly over time, and the performance index is 
optimized to O ( E  ) .  More complete details concerning these formulations and 
results are contained in [6 ] .  

2 
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2.3 Numerical Algorithms 
4 

a 

a 

As described above, the necessary conditions for optimality consist of a 
coup1 ed set of a1 gebrai c equations. Two numerical a1 gori thms were devel oped 
for the solution of these equations. The algorithms and their associated 
convergence proofs are given in [7,8]. I n  the first algorithm, constraints 
on G are treated indirectly by introducing a penalty term in the performance 
index as in (2.4). In the second, it is shown that when the constraints are 
linear, a direct approach may be taken. In this approach, either the con- 
straints are satisfied after a finite number of iterations, or a norm measure 
of the constraint error can be made arbitrarily small as the number of 
iterations increases. Linear constraints on G play an important role in 
eigenvalue/eigenvector assignment and in modal insensitivity design of output 
feedback controllers to be discussed in Section 4.1. 
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SECTION 3 

FIXED-ORDER DYNAMIC CWPENSATION 

I) 

0 

a 

The extension of constant gain output feedback to the case of fixed- 
order dynamic compensation is conceptually straightforward. The compensator 
dynamics are defined in the form: 

and adjoined to the plant dynamics. The problem is then reformulated as a 
constant gain output feedback problem. The structure of the new output feed- 
back gain matrix is 

E = [ :  :] ( 3 . 3 )  

Solution of this new problem yields the matrices needed to define the compen- 
sator dynamics. The main difficulty inherent in this approach is that the 
compensator is overparametized, which invariably leads to convergence prob- 
lems. In addition, the compensator structure permits direct feedback of the 
output to the input, which is not desirable from the points of view of sensor 
noise reduction and robustness. We could invoke the constraint that G = 0, 
but it would be more desirable to avoid this constraint in the beginning by a 
proper choice of problem formulation. Finally, it is not clear how the com- 
pensator states should be penalized in the performance index. If the compen- 
sator states are not penalized properly, this normally leads to solutions 
where the compensator is not coupled to the plant dynamics (either H = 0 or N 
= 0). 

In [SI, it is shown that for a multivariable system described by: 

I )  

0 

= A x  + B s u  
S s s  x ~ E R ~  ( 3 . 4 )  

- 8 -  



a f i xed -o rde r  compensator w i t h o u t  d i r e c t  feedthrough o f  t he  ou tpu t  can be 

formulated i n  observer canonical  f o r m  as: 

0 

u = - H z  usRm (3.6) 
a 

0 

z = P z + uc zcRnc ( 3 . 7 )  

u C = PZu - Ny uCcRnc (3.8) 

where 

0 

H =block diag{[O.. .O 1llxVii=1,. . . ,m} (3.9) 

0 0 0 

P =block d i a g  [P,, . . . ,Pm] (3.10) 

r o  o ... o 0 1  
(3.11) 

In ( 3 . 8 ) ,  N and Pz are free parameter matrices with dimensions (nc x p )  and 
(nc  x m), r e s p e c t i v e l y .  The dimensions o f  Ho and P o  a re  de f i ned  by the  

o b s e r v a b i l i t y  i n d i c e s  of t h e  compensator, which a r e  chosen t o  s a t i s f y :  e 
m 

C 
i )  1 vi = n 

i =1 

The augmented system matr ices:  

A =  [ A s  - B ~ H '  
0 

O P  

ii) vi V i + l  

(3.12) 

- 9 -  



0 

a 

C 

define an optima 
index: 

J 

output feedback prob 

G = [ N PJ 
L 

(3.13) 

em, with the quadratic performance 

[xtQx + u:Ruc] dt} 

where the augmented state vector is 

t t  xt = [xs z ] 

The control uc in (3.7) is defined as 

= - G C X  uC 

(3.14) 

(3.15) 

(3.16) 

and is used only in designing the compensator parameters, which are packed in 
the columns of G. The main advantage to this formulation lies in the fact 
that the problem has been converted to one of constant gain output feedback, 
and the number of free parameters is the minimum needed to represent a 
strictly proper (but otherwise arbitrary) transfer function matrix. The 
necessary conditions for optimality are those given in (2.12-2.14). 

This approach can also be easily extended to include frequency shaped 
cost functionals. In particular, it is shown in [lo] that, because of the 
output feedback formulation, it is not necessary to realize the frequency 
shaping dynamics as a part of the compensator. The realization is only 
needed in the problem formulation, and leads to a unique method of selecting 
the weighting matrix (Q) in (3.14) for penalizing plant and compensator 
states. The extension of this work to the design of fixed-order dynamic 
compensators for two-time scale systems is given in [ll]. Again, the slow 
and fast subsystem design problems are coupled. However, the use of canon- 
ical forms for defining the compensator dynamics leads to a unique matrix 
fraction description for the corresponding transfer functions. This leads 
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to a simple procedure for constraining the solution so that the designs de- 
couple, similar to the concept of gain spillover suppression that was used in 
the constant gain output feedback formulation. The resulting compensators 
can also be digitally implemented using sample rates appropriate for the 
dynamics involved in each time scale. These results are shown to be useful 
in rapid pointing of flexible structures, and in designing tight attitude 
control systems for aircraft flight control where structural modes (or rotor 
modes in the case o f  a helicopter) limit controller bandwidth. More detailed 
results on the controller and observer canonical compensator formulations can 
be found in [12]. 
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SECTION 4 

ROBUSTNESS I N  OUTPUT FEEDBACK DESIGN 

a 

a 

e 

0 

Perhaps the greatest criticism of optimal output feedback design methods 
is their lack of robustness characterization. Two approaches to robust 
design were examined in this research effort. The first is based on the 
concept of modal insensitivity design, and can be considered as a time domain 
approach. The second attempts to recover the loop transmission properties of 
full state .feedback, and can be considered a frequency domain approach. 
However, the entire formulation is cast in the time domain, similar to the 
loop transfer recovery approach now popular in Linear Quadratic Gaussian 
(LQG) design. 

4.1 Modal Insensitivity Design 

One approach to expressing system sensitivity i s  in terms of eigenvalue 
sensitivity to plant parameter variations. This concept is particularly 
useful in the case of flight control problems where control system require- 
ments are often stated in terms of closed loop eigenvalues. The robust 
design objective is to synthesize a feedback controller so the specifications 
are met for the nominal system, and sensitivity of the important closed loop 
eigenvalues is in some sense minimized. However, it is well-known that the 
response o f  a linear system depends on both the eigenvalues and eigenvectors 
(mode shapes), and this has led to the notion o f  modal insensitivity. Modal 

insensitivity implies that the eigenvalues are insensitive, while the associ- 
ated eigenvectors have variations only in magnitude and not in direction. 
The design objective then i s  to assign selected closed loop eigenvalues and 
achieve modal insensitivity of these selected modes. 

In [13,14], it is shown that the requirement for modal insensitivity can 
be written in the form o f  a linear constraint on the output feedback gain 
matrix. Since in most circumstances, the constraint does not completely 
determine the gain matrix, this allows an optimal output feedback formulation 
in which selected eigenvalues and eigenvectors are assigned, and in the final 
design the selected modes are insensitive to a class of variations in the 
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plant parameters. This concept is easily extended to the case of fixed-order 
dynamic compensation. The use of a dynamic compensator does not increase the 
dimension of the modal insensitivity subspace; however, it does give greater 
flexibility in the design (increases the dimension of the free parameter 
subspace). 

In most situations, it is not required that the orientation of the 
entire eigenvector be insensitive to plant parameter variations. Normally, 
only certain elements are required to be zero in order to achieve modal 
decoupling. Thus, a less stringent requirement is that modal decoupling is 
preserved in the presence of plant parameter variations. Reference [15] 
extends the concept of modal insensitivity to that of modal decoupling 
insensitivity. It is shown that the subspace for modal decoupling insensitiv- 
ity is greater than that for modal insensitivity. Once again, the require- 
ment for modal decoupling insensitivity can be written in terms of a linear 
constraint on the output feedback gain matrix. More complete details on 
these problem formulations can be found in [16]. 

e 
4.2 Approximate Loop Transfer Recovery 

0 

* 

Linear Quadratic Regulator (LQR) synthesis methods have guaranteed 
stability margins. Unfortunately, this requires full-state feedback. It has 
been shown that the loop transfer properties of an LQR design for nonminimum 
phase plants can be recovered via an asymptotic design method. This  method 
relies on a cheap control formulation with a subset of the compensator 
dynamics becoming infinitely fast. It is often stated that the order of the 
compensator can later be reduced by discarding the fast modes; however, it is 
not clear how this can be accomplished without introducing direct feedthrough 
of the measured variables. It is generally good practice to avoid having 
direct feedthrough of sensor outputs to improve robustness and reduce the 
effect of sensor noise at high frequency. Aside from robustness issues, the 
order of the resulting compensator when designed for large order systems may 
prove unwarranted. 

a 

- 13 - 



0 

0 

0 

a 

A major objection to optimal output feedback design is that there are no 
guarantees on stability margins, and there are few guidelines for penalizing 
plant states and compensator states to improve either performance or robust- 
ness. One major contribution in this research is to present a formulation in 
which the objective of the fixed-order compensator design is to approximate 
the loop characteristics of a full-state design. Thus, much like the full- 
order compensator design case, a two-step design is implied -- full-state 
feedback followed by approximate loop transfer recovery. 

Full-state feedback design is often used as a first step in designing an 
output feedback controller for multivariable systems. A variety of methods 
exist such as LQR theory, pole placement, eigenvalue/eigenvector assignment, 
model following control, decoupling control design, etc. The most popular 
method is LQR design. It is well-known that this approach also yields 
guaranteed gain and phase margins when measured at the plant input. 

The objective in observer-based controller design is to estimate the 
plant states, and to use the estimated states in place o f  the actual states. 
this results in a higher order system where closed-loop eigenvalues and 
eigenvectors of the full-state design are preserved, and the compensator 
merely adds its own dynamics to the response. When the compensator i s  

designed, based on loop transfer recovery, it is also possible to recover the 
robustness properties of the full-state design. This amounts to suitably 
choosing the weighting matrices in a dual LQR formulation for the observer 

design. Both full-state and observer designs are decoupled. 

In fixed-order compensator design, the notion of state estimation is not 
present. However, it should be recognized that, so long as the loop transfer 
properties of a full-state design can be recovered to a sufficient degree of 
accuracy, then the cl osed-1 oop eigenvalues should contain a set of eigenval- 
ues and eigenvectors that approximate those of the full-state design. More 
importantly, the mu1 tivariable gain and phase margin properties should also 
be approximated. With this in mind, let the return signal in the case of 
f u l 1  -state desi gn be 

a - 14 - 



* * 
u = -K xS (4.1) 

e 

0 

0 

* 
where K is the gain corresponding a LQR design. Referring to (3.6), the 
return signal in the case of fixed-order compensator design is -H z. Thus, 
the objective in designing the compensator should be to minimize 

0 

for a suitably 

* 
y1 = K xS - HOZ 

chosen input and 
the input waveforms as impulses 

(4.2) 

for zero initial conditions. Here we select 
with magnitudes uniformly distributed on the 

unit sphere. 
f ormance : 

This naturally leads to selecting the following index of per- 

(4.3) 

Substituting for y1 from (4.2), and rewriting (4.3) in the form of (3.14), 
leads to the following expressions for the weighting matrices: 

Note that, for zero initial conditions, the effect of the impulses at the 
system input is to create an initial condition, whose variance matrix i s  

g i ven by 

- 
xo - 

e 

B ~ B ~ ~  o 
0 0 

(4.5) 

This is used in the necessary condition (2.13) for the distribution on ini- 
tial conditions. Thus, in this design approach, in addition to approximating 
loop transfer properties of a full-state design, the state and compensator 
weighting, and the initial state distribution matrix are all well-defined. 
Note that, unlike the design of a full-order observer, the design of a 
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fixed-order controller depends on the gain matrix from the full-state design 
step. Moreover, this gain matrix is not implemented as a part of the final 
controller. Reference [17] presents the details on this design approach to 
robustness, and includes several interesting applications. 
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SECTION 5 

CONCLUSIONS 

a 

Th is  research has addressed a v a r i e t y  o f  issues r e l a t e d  t o  t he  opt imal  

ou tpu t  feedback design problem. Two minimal compensator parameter representa- 

t i o n s  have been der ived,  and e f f i c i e n t  a lgo r i t hms  f o r  s o l v i n g  the  opt imal  

ou tpu t  feedback problem were obta ined and proven t o  be convergent. T h i s  work 
has a l s o  extended t h e  known r e s u l t s  f o r  two-time sca le  ( s i n g u l a r  per turba-  

t i o n )  a n a l y s i s  and design o f  f u l l - s t a t e  and observer based c o n t r o l l e r s  t o  t h e  
case o f  ou tpu t  feedback. Both the  constant ga in  output  feedback problem and 

t h e  f i xed -o rde r  compensator design problem have - been addressed i n  t h i s  con- 

t e x t .  F i n a l l y ,  both t ime domain and frequency domain robustness fo rmu la t i ons  

have been developed. 

The main conclus ion o f  t h i s  work i s  t h a t  most, i f  n o t  a l l ,  o f  t h e  objec- 
t i o n s  t o  design by opt imal  ou tpu t  feedback have been addressed and resolved.  

Perhaps t h e  most use fu l  approach i s  t h a t  descr ibed f o r  approximate loop 

t r a n s f e r  recovery.  Th is  work combines most o f  t he  d e s i r a b l e  r e s u l t s  o f  t h i s  
research: robustness i n  t h e  design process, canonical  compensator representa- 

t i o n ,  unique d e f i n i t i o n  f o r  t h e  s t a t e  and compensator weight ings,  and choice 

f o r  t h e  d i s t r i b u t i o n  on i n i t i a l  s ta tes .  

Several problems s t i l l  remain t h a t  should be addressed i n  f u t u r e  
research. These i n c l u d e  f u r t h e r  improvements i n  numerical methods f o r  

s o l v i n g  t h e  opt imal  ou tpu t  feedback problem, a n a l y s i s  o f  t h e  l i m i t a t i o n s  o f  

t h e  approximate l o o p  t r a n s f e r  recovery process, and extens ions o f  these ideas 
t o  t h e  Ha problem. 

0 
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